From surface-enhanced field penetration to robust quantum fractality in artificially curved spacetime:
Topological superconductors and surface Majorana fluids

Matthew S. Foster, Rice University
May 9, 2019
Work done with

Andriy H. Nevidomskyy
Rice U.

Bitan Roy
MPIPKS, Dresden

Pavan Hosur
University of Houston

Hridis Pal
IIT Bombay

Tsz Chun Wu
Rice University

Yang-Zhi Chou
U. Colorado, Boulder

Hong-Yi Xie
U. Wisconsin, Madison

Sayed A. A. Ghorashi
College of William & Mary
3D Topological Superconductivity

- 3D gapped bulk, integer-valued winding number
- 2D gapless *surface fluid* of Majorana fermion quasiparticles

Schnyder, Ryu, Furusaki, Ludwig (2008);
R. Roy (2008); A. Kitaev (2009); G. Volovik (2009);
Qi, Hughes, Raghu, Zhang (2009)
• 3D gapped bulk, integer-valued winding number

• 2D gapless *surface fluid* of Majorana fermion quasiparticles

• Topological bulk pairing:

E.g., isotropic p-wave $\Delta \hat{S} \cdot \vec{p}$ (as in 3He-B, class DIII)

R. Roy (2008); G. Volovik (2009)
Qi, Hughes, Raghu, Zhang (2009)
M. Sato (2009,2010); Fu and Berg (2010)
1. Solid state TSCs: Pairing in Tis, semimetals with SOC?

- Where to look for TSCs? One idea:
 - Semimetals, narrow-gap semiconductors, TIs with strong spin-orbit coupling (SOC)

Why?
1. Small doping, low-carrier density:
 Strong interactions (Coulomb suppresses s-wave)
2. Large renormalization from high density:
 Local pairing operators dominate
3. BCS pairing in conduction/valence band:
 Projected local pairing operators: p-, d-wave…

Y. L. Chen et al. (2010)
1. Solid state TSCs: Pairing in Tis, semimetals with SOC?

- **Where to look for TSCs? One idea:**
 - Semimetals, narrow-gap semiconductors, TIs with strong spin-orbit coupling (SOC)

Why?

1. Small doping, low-carrier density:
 - Strong interactions (Coulomb suppresses s-wave)
2. Large renormalization from high density:
 - *Local pairing operators dominate*
3. BCS pairing in conduction/valence band:
 - *Projected local pairing operators: p-, d-wave…*

Examples:

- **Dirac semimetal or TI:** 4 of 6 projected local pairing operators are odd-parity, p-wave, topological
 - M. Sato (2009,2010); Fu and Berg (2010); L. Fu (2014)
- **Luttinger semimetal:** 5 of 6 projected local pairings are even-parity, d-wave (e.g., d+id Weyl)
 - Brydon, Wang, Weinert, Agterberg (2016); Savary, Ruhman, Venderbos, Fu, Lee (2017); Roy, Ghorashi, Foster Nevidomskyy (2019); Sim, Mishra, Park, Kim, Cho, Lee (2018)
1. Solid state TSCs: Pairing in Tis, semimetals with SOC?

Not the whole story, though

E.g., Luttinger semimetal can host odd-parity states:

- “Septet,” orbital p-wave pairing with nodal loops

 Brydon, Wang, Weinert, Agterberg (2016); H. Kim et al. (2018)

- $^3\text{He-B} \, \Delta \hat{S} \cdot \vec{p}$ pairing might be favored by electron-optical phonon interactions in half-Heusler compounds

 Savary, Ruhman, Venderbos, Fu, Lee (2017); see also Roy, Ghorashi, Foster Nevidomskyy (2019)
1. Solid state TSCs: Pairing in Tis, semimetals with SOC?

Not the whole story, though

E.g., Luttinger semimetal can host odd-parity states:

- “Septet,” orbital p-wave pairing with nodal loops
 Brydon, Wang, Weinert, Agterberg (2016); H. Kim et al. (2018)
- $^3\text{He-B } \Delta \hat{S} \cdot \vec{p}$ pairing might be favored by electron-optical phonon interactions in half-Heusler compounds
 Savary, Ruhman, Venderbos, Fu, Lee (2017); see also Roy, Ghorashi, Foster Nevidomskyy (2019)

Real materials:

1. $\text{Cu}_x\text{Bi}_2\text{Se}_3$
 - Very small fraction (5%) of surface shows signatures of superconductivity in STM! (R. Tao et al. 2018)

2. $\text{Nb}_x\text{Bi}_2\text{Se}_3$
 - Evidence for nematicity (Torque magnetometry T. Asaba et al. 2017)

3. YPtBi
 - Power-law temperature-suppression in penetration depth (H. Kim et al. 2018)
2. Meissner penetration depth: Fully gapped TSCs

Meissner field penetration

- **Red arrows**: magnetic field
- **Blue curves**: Majorana surface density profile

Length scales:
1. London (bulk diamagnetic) field penetration depth $\lambda_L^{(0)}$
2. Coherence length = surface fluid depth l_{coh}
2. Meissner penetration depth: Fully gapped TSCs

Linear Response Theory

\[\nabla^2 A = -\frac{4\pi}{c} J \]

\[-2B_y^{(0)} = \left[q_z^2 + \left(\lambda_L^{(0)} \right)^{-2} \right] \tilde{A}(q_z) + \frac{4\pi}{c^2} \int_{Q_z} \tilde{\Pi}^{xx}_{1,R}(0,0,0; q_z, -Q_z) \tilde{A}(Q_z) \]

- London response
- Paramagnetic current-current

- Calculate paramagnetic current-current correlator for TSC, invert integral equation to get \(A(z), \ B(z) = \partial_z A(z) \)

- Bulk-bulk (fully gapped!) paramagnetic response exponentially suppressed at low \(T << T_c \)

- *Surface-surface contribution?*
2. Meissner penetration depth: Fully gapped TSCs

Model: “Solid-state $^3\text{He-B}$”

$$H = \frac{1}{2} \int \frac{d^2k \, dk_z}{(2\pi)^3} \chi^\dagger \hat{h} \chi,$$

$$\hat{h}(k, k_z) = \left(\frac{k^2 + k_z^2}{2m} - \mu \right) \hat{\sigma}^3 + \Delta (\hat{s} \cdot \vec{k} + \hat{s}^3 k_z) \hat{\sigma}^2$$

- Hard wall boundary condition at $z = 0$
- Surface states with $\varepsilon_k = \Delta |k|$:

$$\psi^s_k(z) = \frac{e^{-z/l_{coh}}}{\sqrt{N^s_k}} \sin \left(z \sqrt{k^2_F - l_{coh}^{-2} - k^2} \right) |\psi^0_k\rangle$$
2. Meissner penetration depth: Fully gapped TSCs

Model: “Solid-state 3He-B”

\[H = \frac{1}{2} \int \frac{d^2k \, dk_z}{(2\pi)^3} \chi^\dagger \hat{h} \chi, \]

\[\hat{h}(k, k_z) = \left(\frac{k^2 + k_z^2}{2m} - \mu \right) \hat{\sigma}^3 + \Delta (\hat{s} \cdot \mathbf{k} + \hat{s}^3 k_z) \hat{\sigma}^2 \]

- **Surface-surface current-current correlator:**

\[\tilde{\Pi}^{xx}_{1,R,s,s}(0, 0, 0; q_z, -Q_z) \simeq -C \left(\frac{e}{m} \right)^2 \left(\frac{k_B T}{\Delta} \right)^3 \Theta(0, q_z) \Theta(0, -Q_z), \]

\[\Theta(k, q_z) \equiv \int \limits_0^\infty dz \, e^{-i q_z z} \psi_{k}^{\dagger}(z) \psi_{k}^{s}(z) \]

- **Two powers of T from current operator, one from surface DoS**
Main Results

\[B_y(z) = B_y^{(0)} e^{-z/\lambda_L^{(0)}} - B_y^{(0)} \varrho(T) \left[\partial_z G(z) \right] G(0) \]

- London response
- Correction due to the surface fluid

- Solve integral equation for field

- Length scale
\[\varrho(T) = |\#| \left(\lambda_L^{(0)} \right)^6 l_{\text{coh}}^{-1} k_F^4 T^3, \quad t \equiv \frac{k_B T}{\Delta k_F} \]

- Dimensionless function \(G(z) \) from convolution of London, surface responses

- Change in penetration depth
\[\delta \lambda = \varrho(T) G(0) G(0) > 0 \]

\(\propto T^3 \)

Wu, Pal, Hosur, Foster (to appear)
Type I field profile $(\lambda_L^{(0)} \ll l_{coh})$:

- Deeper penetration due to surface fluid
- Friedel oscillations in profile

\[
t = \frac{k_B T}{\Delta k_F}
\]

\[
k_F^{-1} = 0.5 \lambda_L^{(0)}
\]

\[
l_{coh} = 10 \lambda_L^{(0)}
\]

Wu, Pal, Hosur, Foster (to appear)
2. Meissner penetration depth: Fully gapped TSCs

Type II \(\left(\lambda_L^{(0)} \gg l_{\text{coh}} \right) \) field profile

- Strongest modulation near the surface
- Field penetration governed by London, *enhanced amplitude*

\[
t = \frac{k_B T}{\Delta k_F}
\]

\[
k_F^{-1} = 0.07 \lambda_L^{(0)}
\]

\[
l_{\text{coh}} = 0.27 \lambda_L^{(0)}
\]

Wu, Pal, Hosur, Foster (to appear)
3. TSCs and Quantum corrections to surface transport

Interaction corrections to transport: Altshuler-Aronov

In a disordered, interacting electron system, electrons multiply scatter elastically off of

- Impurities (weak localization, etc)
- $2k_F$ Friedel oscillations in the density *induced by the impurities*

Coherent scattering for low-energy carriers near the Fermi energy!

Altshuler and Aronov 1985 (Review)
Aleiner, Altshuler, and Gershenson 1999 (Review)
Zala, Narozhny, and Aleiner 2001
Surface Majorana fluid can carry spin or heat

Quantized surface transport coefficients at zero temperature, without interactions.

Scattering off of impurity-induced density Friedel oscillations (Altshuler-Aronov corrections, short-ranged interactions)

A. Tsvelik (1995)
Ostrovsky, Gornyi, Mirlin (2006)
3. TSCs and Quantum corrections to surface transport

Surface Majorana fluid can carry spin or heat

Quantized surface transport coefficients at zero temperature, without interactions.

Scattering off of impurity-induced density Friedel oscillations (Altshuler-Aronov corrections, short-ranged interactions)

Vanish in every fixed disorder realization.

Ingredients:

1. Anomalous time-reversal symmetry (topology!)
2. Spin U(1) Ward identity

Xie, Chou, and Foster (2015)
Surface Majorana fluid can carry spin or heat
Quantized surface transport coefficients at zero temperature, without interactions.

Scattering off of impurity-induced density Friedel oscillations (Altshuler-Aronov corrections, short-ranged interactions)

Anomalous time-reversal symmetry:
No Majorana “density” (mass, spin, color) can ripple (or become non-zero).

Large winding number expansion confirms.

Universal spin, thermal conductivities!

\[\sigma_s = \frac{|\nu|}{\pi \hbar} \left(\frac{\hbar}{2} \right)^2 \]

\[\kappa \frac{T}{T} = \frac{|\nu|}{\pi \hbar} \frac{\pi^2 k_B^2}{6} \]

Xie, Chou, and Foster (2015)
What happens if we spatially modulate the “speed of light” in a 2D Dirac material?
What happens if we spatially modulate the “speed of light” in a 2D Dirac material?

“Gravitational” lensing of relativistic carriers

4. “Artifical gravity” and robust fractality

2+1-D Dirac fermion propagating through curved spacetime:

\[
S = \int \sqrt{|g|} \, d^3 x \, \bar{\psi} \, E_A^\mu \, \hat{\gamma}^A \left(i \partial_\mu - \frac{1}{2} \omega_\mu^{BC} \hat{S}_{BC} \right) \psi
\]

Spacetime volume measure:
\[
g^{\mu\nu} = E_A^\mu \, E_B^\nu \, \eta^{AB}
\]

"Dreibein": \[
\{ \hat{\gamma}^A, \hat{\gamma}^B \} = 2\eta^{AB} \hat{1}
\]

Spin connection
2+1-D Dirac fermion propagating through curved spacetime:

\[
S = \int \sqrt{|g|} d^3x \bar{\psi} E^\mu_A \hat{\gamma}^A \left(i \partial_\mu - \frac{1}{2} \omega_\mu^{\ BC} \hat{S}_{BC} \right) \psi
\]

Specialize to a static, spatially inhomogeneous velocity of light \(v_{1,2}(r) \):

\[
g_{\mu \nu}(r) = \begin{bmatrix}
-v_1(r) & v_2(r) & 0 & 0 \\
0 & v_2(r) & 0 & 0 \\
0 & \frac{v_2(r)}{v_1(r)} & 0 & v_1(r) \\
0 & 0 & \frac{v_1(r)}{v_2(r)} & 0
\end{bmatrix}
\]

Scalar curvature for \(v_1(r) = v_2(r) = v(r) \):

\[
R = -\frac{2}{v(\mathbf{r})} \nabla^2 v(\mathbf{r})
\]
2+1-D Dirac fermion propagating through curved spacetime:

\[S = \int dt \, d^2 r \left[\bar{\psi} i \partial_t \psi + \frac{1}{2} \sum_{a=1,2} v_a(r) \left(\bar{\psi} i \sigma^a \partial_a \psi \right) \right] \]

Specialize to a static, spatially inhomogeneous velocity of light \(v_{1,2}(r) \):

\[
g_{\mu \nu}(r) = \begin{bmatrix} -v_1(r) & v_2(r) & 0 & 0 \\ 0 & v_2(r) & v_1(r) & 0 \\ 0 & 0 & v_1(r) & v_2(r) \end{bmatrix} \]

Scalar curvature for \(v_1(r) = v_2(r) = v(r) \):

\[R = -\frac{2}{v(r)} \nabla^2 v(r) \]
How to realize?

(1) Surface of class DIII topological superconductor

Electric potentials on the surface couple gravitationally:

\[\nu_1(r) = \nu_2(r) = \nu_0 \left[1 + \vartheta \frac{eA^0(r)}{E_{\text{bulk}}} \right] \]

Nakai and Nomura (2014)
Ghorashi and Foster (2019)
2D Quasiparticles in a correlated phase

How to realize?

(2) Spatial order parameter fluctuations in a correlated phase

D-wave cuprates: \(\Delta(r) \) modulates quasiparticle velocities parallel to the Fermi surface

BSCCO STM Data: K. McElroy, J. C. Davis et al., PRL (2005)
Low energy:
Disorder irrelevant.
Plane-wave-like (ergodic) states

Finite energy:
Disorder irrelevant.
Energy relevant.
... Ergodic states ?

Nakai and Nomura, 2014
Low energy:
Disorder irrelevant.
Plane-wave-like (ergodic) states

Finite energy:
Disorder irrelevant.
Energy relevant.
(Lots of) Critical states!

2D Dirac material with velocity modulation
Ghorashi and Foster (2019)
Multifractal analysis of critical states

\[
\int d^2 r \, |\psi(r)|^{2q} \sim \left(\frac{b}{L} \right)^{\tau(q)}
\]

• Moment spectrum:

\[
\tau(q) = \begin{cases}
2(q - 1), & \text{plane wave} \\
0, & \text{localized state}
\end{cases}
\]

• Anomalous part:

\[
\Delta(q) \equiv \tau(q) - 2(q - 1)
\]

• Parabolic ansatz:

\[
\Delta(q) = \frac{2}{q_c^2} q(1 - q)
\]
Disorder dependence:
Critical states with universal statistics across the energy spectrum
(State counted in DoCS: 4% error threshold, 85% $0 < q < q_c$)

Strong disorder (horizons): $\Delta v_{1,2} \gtrsim v_0 \Rightarrow \lambda \gtrsim 0.4$
System-size dependence:
Size = \((2N+1) \times (2N+1)\) momentum grid
(State counted in DoCS: 4\% error threshold, 85\% \(0 < q < q_c\))

\(\lambda = 0.060\)
Compare: Dirac TSC surface with random SU(2) gauge dirt (CI)

Critical Percolation without Fine-Tuning on the Surface of a Topological Superconductor
Ghorashi, Liao, and Foster PRL 121, 016802 (2018)
Compare: Dirac TSC surface with random SU(2) gauge dirt (Cl)

Topological CI (WZNW):
Equivalent to scattering between *pairs* of nodes in cuprates:
Nersesyan, Tsvelik, Wenger PRL (1994)
Schnyder, Ryu, Ludwig PRL (2009)

Strongest multifractality predicted at zero energy

Generic CI (no WZNW):
Scatter between all four nodes.
All states localized

Ghorashi, Liao, and Foster,
PRL 121, 016802 (2018)
1. Odd-parity, topological pairing natural in Dirac semimetals (Fu, Berg 2010), d-wave, Weyl pairing natural in Luttinger semimetals, but odd-parity TSC is possible [Savary, Ruhman, Venderbos, Fu, Lee (2017), 1]

3. Quantized heat and (if conserved) spin transport (no Altshuler-Aronov corrections) [3]

 - Criticality: “stacks” of quantum Hall plateau transition states in C, A, D [5,6]?
 - Random lensing results similar to cuprate STM data [5]

1. Roy, Ghorashi, Foster, Nevidomskyy PRB (2019)
2. Wu, Pal, Hosur, Foster, to appear
3. Xie, Chou, Foster PRB (2015)
4. Foster and Yuzbashyan PRL (2012); Foster, Xie, Chou PRB (2014); Chou and Foster PRB (2014)
5. Ghorashi and Foster arXiv (2019), under review @ PRL