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Related:

• Quantum hydrodynamics of a dirty MFL 

Wu, Liao, Foster (PRB 2022)

• Shot noise suppression in a dirty MFL 

Wu, Foster arXiv:2312.03071



Outline

I. Review: BCS pairing of fractal wave functions

II. Example: Amplitude and stiffness in the Aubry-Andre 

(Hofstadter Butterfly) model

III. Interference-mediated pairing in a dirty marginal Fermi liquid
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Review:

Evers and Mirlin RMP 2008

PRBM model, 1/2 <  < 3/2, 

N = 4000
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• “Pairing of exact eigenstates”

• Can enhance pairing amplitude                                                           

near the SIT
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• Aubry-Andre model: Uniform hopping in 

an incommensurate periodic potential

• Extended, localized, critical phases

• Critical phase (with Hofstadter butterfly 

spectrum)

Fractality and superconductivity: Numerical test

Extended Critical
Localized



• Self-consistent static mean-field (BdG) numerics for 

the Aubry-Andre-Hubbard model

– Same method as Ghosal, Randeria, Trivedi (1998)

Fractality and superconductivity: Numerical test

Xinghai Zhang

Rice University

• Zhang and Foster (PRB 2022)

Related:

• Anderson-Mott transition and spin glass order                         

Zhang and Foster 2309.13114

Early evidence of enhancement:

Fan, Chern, Lin 2021



Fractality enhances superconductivity

• Numerics: Renormalized single-particle MIT

• BCS pairing strongly enhanced at the transition 

Zhang and Foster 2022



Amplitude and stiffness

Zhang and Foster 2022



Disorder in s-wave superconductors

• Anderson’s theorem (1960)

– s-wave superconductivity is immune to                                                                  

non-magnetic disorder

– Tc remains unchanged

Review:

Altshuler and Aronov 1985



Disorder in s-wave superconductors

• Anderson’s theorem (1960)

– s-wave superconductivity is immune to                                                                  

non-magnetic disorder

– Tc remains unchanged

• Maekawa & Fukuyama (1982)

How about Anderson 

localization?
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Multifractal enhancement in s-wave superconductors

• Maekawa & Fukuyama (1982)

– Suppression due to quantum interference and long-ranged Coulomb 

interactions (SIT precursor)
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Multifractal enhancement in s-wave superconductors

• Maekawa & Fukuyama (1982)

– Suppression due to quantum interference and long-ranged Coulomb 

interactions (SIT precursor)

• Short-ranged, other interactions + Chalker scaling: 

Enhancement of Tc near Anderson MIT (2007)
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Ingredients:

• N-flavored electrons

• SU(N) matrix bosons

• Yukawa coupling (e.g. FM)

• Boson-boson interactions 

• Potential disorder

Model: Fermions, quantum-critical bosons, potential disorder

Damia, Kachru, Raghu, 

Torroba 2019

Nosov, Burmistrov, 

Raghu 2020



Self-consistent saddle-point solution at N = , finite temperature T:

1. Fermions: Impurity scattering, inelastic MFL

MFL from SCBA, using dressed (quantum relaxational) boson

Disorder-smeared saddle-point: MFL, quantum relaxational bosons

Patel, Guo, Esterlis, 

Sachdev 2023

Wu, Liao, Foster 2022



Self-consistent saddle-point solution at N = , finite temperature T:

1. Fermions: Impurity scattering, inelastic MFL

2. Bosons: Quantum relaxational

• Diffusive dynamics (z = 2)

• Thermal mass (boson-boson interactions)

• Generic form above a QCP

Disorder-smeared saddle-point: MFL, quantum relaxational bosons

QCP

Patel, Guo, Esterlis, 

Sachdev 2023

Wu, Liao, Foster 2022



Pairing in the MFL 1: Semiclassics

• Diffusive Cooper ladder with MFL self-energy
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Pairing in the MFL 1: Semiclassics

• Diffusive Cooper ladder with MFL self-energy

• At low-T, can drop dephasing

• Strong suppression of Tc: (Planckian dissipation:                            

no well-defined fermion quasiparticles) Cf. Raghu, Torroba, 

Wang 2015



Pairing in the MFL 2: Quantum interference

• Interference-mediated mixing of Cooper, SU(N) boson:                   

Maekawa-Fukuyama processes

Related: SC near a FM 

QCP Nosov, Burmistrov, 

Raghu 2023
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Pairing in the MFL 2: Quantum interference

• Semiclassical ladder ~ constant, renormalizes W  Weff

• Power-law from quantum correction due to critical boson

• Interference: Larger Tc from smaller normal-state dc



Summary: Interference-mediated pairing in dirty MFLs

1. Pairing amplitude can be enhanced by fractality                                

(pairing of exact eigenstates picture, no long-ranged Coulomb)

2. Tc suppression due to interference with Coulomb:                         

Maekawa and Fukuyama (SIT precursor)

3. 1 and 2 are the same interference mechanism!

How about Anderson 

localization?
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Summary: Interference-mediated pairing in dirty MFLs

1. Pairing amplitude can be enhanced by fractality                                

(pairing of exact eigenstates picture, no long-ranged Coulomb)

2. Tc suppression due to interference with Coulomb:                         

Maekawa and Fukuyama (SIT precursor)

3. 1 and 2 are the same interference mechanism!

4. Model dirty MFL: N-fermions, SU(N) matrix bosons, disorder 

smearing

5. Semiclassical pairing susceptibility strongly suppressed

6. Quantum (Maekawa-Fukuyama) contribution is power-law in T 

due to quantum-critical bosons: interference-mediated pairing!

7. Quantum interference can survive in hydrodynamic modes 

despite Planckian dissipation of quasiparticles…?!
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