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First, an advertisement:

• In a strongly interacting fermion-boson soup*, hydrodynamic 

collective modes for conserved quantities (charge, spin, heat) are 

classical or quantum?

* Marginal Fermi liquid with Planckian dissipation and ordinary (non-SYK) impurity scattering
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Nonequilibrium quantum dynamics (quench, Floquet, etc.):
 

• Often interested in “protected” quantum systems

1. Integrable or effectively integrable (MBL?)

2. Low-dimensional (kinematically constrained)

3. Topological

• Prethermalization plateau (collisionless steady-state)

Dissipation in “protected” quantum systems



Nonequilibrium quantum dynamics (quench, Floquet, etc.):
 

• Often interested in “protected” quantum systems

1. Integrable or effectively integrable (MBL?)

2. Low-dimensional (kinematically constrained)

3. Topological

• Prethermalization plateau (collisionless steady-state)

• Thermalization in a not-quite ideal quantum system

1. Frequently mediated by “irrelevant” operators

2. Hard to deal with by otherwise powerful (e.g. field theory) methods 

• Alternative: Semiclassical (?) hydrodynamics

Dissipation in “protected” quantum systems



Light-pulse induced dynamics in a helical edge loop

Abanin, Lee, Levitov 2006

Young, Jarillo-Herrero et al. 2014

Che, Lau, Murthy, Fertig et al. 2020

Schindler, Yazdani, Bernevig, Neupert et al. 2018

Shumiya, Balicas, Zhang, Yao, Hasan et al. 2022

• 1D helical (spin-momentum locked) edge liquid

1. Edge states of a 2D Z2 topological insulator

2. Synthetic realizations, e.g.

– N-layer graphene

– Edge liquids of higher-order TIs



• 1D helical (spin-momentum locked) edge liquid

1. Edge states of a 2D Z2 topological insulator

2. Synthetic realizations, e.g.

– N-layer graphene

– Edge liquids of higher-order TIs

• Setup: Light-induced (axial anomaly) circulating spin, 

charge packets

Light-pulse induced dynamics in a helical edge loop

Abanin, Lee, Levitov 2006

Young, Jarillo-Herrero et al. 2014

Che, Lau, Murthy, Fertig et al. 2020

Schindler, Yazdani, Bernevig, Neupert et al. 2018

Shumiya, Balicas, Zhang, Yao, Hasan et al. 2022
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• Electric pulse-induced “quench” (non-interacting Kane-Mele model, open BC)
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• 1D helical edge liquid with Rashba SOC

– Slow rotation of spin texture with kx

• Rashba SOC + Screened Coulomb:

– Irrelevant “1-particle Umklapp” (1PU)                                  

scattering processes

Light-pulse induced dynamics in a helical edge loop

Right + Right           Right (sum) + Left (zero) momentum 

Lezmy, Oreg, Berkooz 2012 

Kainaris, Gornyi, Carr, Mirlin 2014

Chou, Levchenko, Foster 2015



• 1D helical edge liquid with Rashba SOC

– Slow rotation of spin texture with kx

• Rashba SOC + Screened Coulomb:

– Irrelevant “1-particle Umklapp” (1PU)                                  

scattering processes

• Luttinger liquid interactions?

– Bosonize, refermionize to remove them

– Price: 1PU interaction becomes nonlocal due to “strings”

Light-pulse induced dynamics in a helical edge loop

Right + Right           Right (sum) + Left (zero) momentum 

Lezmy, Oreg, Berkooz 2012 

Kainaris, Gornyi, Carr, Mirlin 2014

Chou, Levchenko, Foster 2015



• 1D helical edge liquid with Rashba SOC

– Slow rotation of spin texture with kx

• Rashba SOC + Screened Coulomb:

– Irrelevant “1-particle Umklapp” (1PU)                                  

scattering processes

• Effect on circulating charge packets?                                

Chiral hydrodynamics

Light-pulse induced dynamics in a helical edge loop

Right + Right           Right (sum) + Left (zero) momentum 

Lezmy, Oreg, Berkooz 2012 

Kainaris, Gornyi, Carr, Mirlin 2014

Chou, Levchenko, Foster 2015



• 1D helical edge liquid with Rashba SOC

– Slow rotation of spin texture with kx

• Rashba SOC + Screened Coulomb:

– Irrelevant “1-particle Umklapp” (1PU)                                  

scattering processes

 Particles:

 Momenta:
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• 1D helical edge liquid with Rashba SOC

– Slow rotation of spin texture with kx

• Rashba SOC + Screened Coulomb:

– Irrelevant “1-particle Umklapp” (1PU)                                  

scattering processes

 Particles:

 Momenta:

              Right, left momenta separately conserved (as in SG model)

Light-pulse induced dynamics in a helical edge loop

Right + Right           Right (sum) + Left (zero) momentum 

After external field is turned off, no disorder:

Lezmy, Oreg, Berkooz 2012 

Kainaris, Gornyi, Carr, Mirlin 2014

Chou, Levchenko, Foster 2015



 Particles:

 Momenta:

Local initial right-mover excess:

Shock dynamics in a helical edge loop

Right + Right           Right (sum) + Left (zero) momentum 

After external field is turned off, no disorder:

Lightcone coordinates



 Particles:

 Momenta:

Local initial right-mover excess:

Local right-mover (left-mover) temperature heated (cooled) by 

imbalance relaxation I

Shock dynamics in a helical edge loop

Right + Right           Right (sum) + Left (zero) momentum 

After external field is turned off, no disorder:

Lightcone coordinates



Local right-mover (left-mover) temperature heated (cooled) by 

imbalance relaxation I  

Short-time perturbation theory:

Shock dynamics in a helical edge loop



Shock formation: Imbalance self-focuses at leading right-edge

Shock dynamics in a helical edge loop
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Shock formation: Imbalance self-focuses at leading right-edge

Shock dynamics in a helical edge loop



Shock dynamics in a helical edge loop



• 4 light-induced circulating spin, charge packets

• Current oscillations along field: “THz antenna array”

Bounce dynamics between opposite charge packets



• Imbalance collision-dominated regime: 

frequency doubling (shock and bounce)

Bounce dynamics between opposite charge packets
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• Imbalance collision-dominated regime:                                          

frequency doubling (shock and bounce)

Dimensionless interaction strengths (blue dashed is W = 1):        

(a) W = 0 (b) W = 0.01 (c) W = 0.1 (d) W = 0.5 (e) W = 2 (f) W = 5 

Bounce dynamics between opposite charge packets
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Noninteracting particles with a random Hamiltonian*

1.  Level spacing statistics

 

Warmup: Diagnostics for Anderson localization

Review:

Evers and Mirlin RMP 2008* Non-interacting PRBM model, 1/2 <  < 3/2, N = 4000



Noninteracting particles with a random Hamiltonian*

2.  Inverse participation ratio

 

Warmup: Diagnostics for Anderson localization

Review:

Evers and Mirlin RMP 2008* Non-interacting PRBM model, 1/2 <  < 3/2, N = 4000



3.  Chalker-scaling correlator (energy-split IPR)

 

Warmup: Diagnostics for Anderson localization

Review:

Evers and Mirlin RMP 2008* Non-interacting PRBM model, 1/2 <  < 3/2, N = 4000

Chalker and Daniell 1988 

Chalker 1990
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Chalker and Daniell 1988 

Chalker 1990



3. Chalker-scaling correlator (energy-split IPR)

Nearby states in energy:

• Vanishing overlap in Anderson insulator

• Uniform overlap in diffusive metal

• Fractal overlap at the localization transition

 

Warmup: Diagnostics for Anderson localization

Chalker and Daniell 1988 

Chalker 1990

Fractal dimension



• Vanishing overlap in Anderson insulator

• Fractal overlap at the localization transition

 Interactions can be strongly enhanced near the MIT

 

Generalized Hubbard chain

Interaction matrix elements in fixed realization of disorder

 

Fractal enhancement of interactions near a MIT



Disorder in s-wave superconductors

• Anderson’s theorem (1960)

– s-wave superconductivity is immune to                                                                  

non-magnetic disorder

– Tc remains unchanged

Review:

Altshuler and Aronov 1985



Disorder in s-wave superconductors

• Anderson’s theorem (1960)

– s-wave superconductivity is immune to                                                                  

non-magnetic disorder

– Tc remains unchanged

• Maekawa & Fukuyama (1982)

How about Anderson 

localization?

𝛿𝑇𝑐
𝑇𝑐

~ − ln3
Λ

𝑇𝑐

Maekawa and Fukuyama 1982

Finkel’stein 1987



Multifractal enhancement in s-wave superconductors

• Maekawa & Fukuyama (1982)

– Suppression due to quantum interference and long-ranged Coulomb 

interactions (SIT precursor)

• Short-ranged, other interactions + Chalker scaling: 

Enhancement of Tc near Anderson MIT

𝛿𝑇𝑐
𝑇𝑐

~ − ln3
Λ

𝑇𝑐

Maekawa and Fukuyama 1982

Finkel’stein 1987

Feigel’man, Ioffe, Kravtsov, Yuzbashyan 2007

Feigel’man, Ioffe, Kravtsov, Cuevas 2010

Burmistrov, Gornyi, Mirlin 2012, 2015

Mayoh and Garcia-Garcia 2015

Fan and Garcia-Garcia 2020

Fan, Chern, Lin 2021

Stosiek, Evers, Burmistrov 2021



Spectrum-wide fractality and superconductivity

• Aubry-Andre model: Uniform hopping in 

an incommensurate periodic potential

• Extended, localized, critical phases

• Critical phase (with Hofstadter butterfly 

spectrum) shows SWQC*



• Aubry-Andre model: Uniform hopping in                                                  

an incommensurate periodic potential

• Extended, localized, critical phases

• Critical phase (with Hofstadter butterfly                                                                    

spectrum) shows SWQC*

* Spectrum-wide quantum criticality

– Entire (or most) of single-particle energy spectrum consists of quantum-

critical multifractal wave functions

– Occurs at fine-tuned MIT in 1D Aubry-Andre and power-law random-

banded (PRBM) matrix models

– Also appears in models of surface states for bulk topological 

superconductors and 2D nodal (d-wave) superconductors

Ghorashi, Liao, Foster 2018

Sbierski, Karcher, Foster 2020

Ghorashi, Karcher, Davis, 

Foster 2020

Karcher and Foster 2021

Spectrum-wide fractality and superconductivity
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• Aubry-Andre model: Uniform hopping in                                                    

an incommensurate periodic potential

• Extended, localized, critical phases

• Critical phase (with Hofstadter butterfly                                                             

spectrum) shows SWQC*

• Self-consistent static mean-field numerics for the 

Aubry-Andre-Hubbard model

– Same method as Ghosal, Randeria, Trivedi (1998)

– Incorporates the Hartree shift (Altshuler-Aronov corrections)

– Also computed BCS superfluid stiffness

Spectrum-wide fractality and superconductivity



Spectrum-wide fractality enhances superconductivity

• Numerics: SWQC survives at MIT

• BCS pairing strongly enhanced at the transition 

Earlier evidence of enhancement:

Fan, Chern, Lin 2021



Spectrum-wide fractality enhances superconductivity



• Interaction-dressed Hofstadter energy spectrum:                  

DoS is enhanced near MIT (subband flattening)

• Plays some role in enhancement of SC

Spectrum-wide fractality enhances superconductivity



• Alternative 1D model without DoS enhancement:   

Power-Law random-banded matrix model

•                                    ,        is a GOE matrix

• Without interactions:

–                     Random-matrix regime

–                     Ergodic (but superballistic) metallic phase

–                     SWQC Anderson MIT

–                     (Power-law localized) Anderson insulator 

Review:

Evers and Mirlin RMP 2008

PRBM model with attractive Hubbard



• Numerics: SWQC survives at MIT

• BCS pairing strongly enhanced at the transition 

Spectrum-wide fractality enhances superconductivity



Spectrum-wide fractality enhances superconductivity



3D topological superconductors: Spectrum-wide quantum criticality

• Replica symmetry suggests that 2D surface states of bulk TSCs can 

avoid Anderson localization via a strange mechanism that connects to 

topological quantum phase transitions in 2D

• “Spectrum-wide quantum criticality” (SWQC): all single-particle wave 

functions are quantum critical, i.e. are neither localized nor extended, 

but random and critically rarified, with a universal spectrum of level-set 

statistics (“multifractality”) 

• SWQC for 2D surface states of 3D TSCs: All finite-energy surface 

states are 2D quantum-Hall plateau-transition states!!



Surface state of the simplest, class DIII 

topological superconductor (“solid-

state Helium 3B”): 

• Single, 2-component massless 

Majorana fermion

• No conserved charge (e.g. spin) to 

gauge! 

• Only energy is conserved

• Gauging energy by coupling to the 

stress tensor: Quenched gravity! 

(formally irrelevant at zero energy)

Ghorashi, Karcher, Davis, Foster 2020

Spectrum-wide quantum criticality



Spectrum-wide quantum criticality

Ghorashi, Karcher, Davis, Foster 2020

Surface state of the simplest, class DIII 

topological superconductor (“solid-

state Helium 3B”): 

• Single, 2-component massless 

Majorana fermion

• No conserved charge (e.g. spin) to 

gauge! 

• Only energy is conserved

• Gauging energy by coupling to the 

stress tensor: Quenched gravity! 

(formally irrelevant at zero energy)



Beyond topology: Dirty d-wave quasiparticles redux

Nematic disorder: natural 

version of quenched 

gravitational dirt

BSCCO STM Data: K. McElroy, J. C. Davis et al., PRL (2005)



Summary: Some stuff since covid-19
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